If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+14k+15=0
a = 1; b = 14; c = +15;
Δ = b2-4ac
Δ = 142-4·1·15
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{34}}{2*1}=\frac{-14-2\sqrt{34}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{34}}{2*1}=\frac{-14+2\sqrt{34}}{2} $
| 5r^2-3+r=28 | | (11y-36=63 | | 10x+18+2x+18=18- | | 3m^2-25m-18=0 | | 2x+8+9x+7=180 | | 2x+6=9x+7 | | x+84+63=180 | | x+43+47=180 | | x45=23 | | x+42+30=180 | | 69=v/3 | | 21x+10=22x+4 | | 12(x-9)=-1 | | 2n-15=9-4n | | 28-x=98-6x | | 12(x-9)=-1(‘ | | 21x+10=22+4 | | 5a-6=9+4a-2a | | 1/4q+1/5q=1 | | 11(x-6)=-1 | | 2r-(r-7)=2r-3 | | 11=2/3p | | 1/3a-3/2-6+1/6=47/6 | | 2a+3a-6a-3a=20 | | 5+2x=13+x | | 5/3w+5=7 | | 4q-6=12q | | x+70+80=180 | | (10x+1)=-2 | | x+80+70=180 | | 5x−1=2x+24 | | (5x-6)(3x-7)=0 |